
		

		

		
			
				
					
					
					
					
				

				
					
						
							Features
							
								 Raster & Vector Image Formats Resize, crop, autofix, 30+ filters Metadata Color management Text and graphics rendering Chroma keying

								 Very large image manipulation Working with Photoshop files PDF processing HTML5-based image editor What's New

								Customer's Canvas (Web-to-print toolkit)

							

						

						Pricing

						
							Resources
							SupportDocumentationSamplesDownloadsForums

						

						
							Company
							About usContact UsEventsBlog

						

						
							Account
							
								

								Support Cases
								Licenses & Downloads
								Orders
								Subscriptions
								Profile
								

								Log Out
							

						

					

					
						Call us at 1-800-661-8190 or send an email at info@aurigma.com

						
						
						Get Trial
					

				

				
					
						
							
								
									
									
								

							

						

					

					

				

			
		
		
				Graphics Mill 11.5.28
	Working with Image Formats

Topics

	About Graphics Mill
	What's New?
	Breaking Changes in GraphicsMill 11
	Features
	Supported File Formats
	System Requirements
	Getting Started
	Working with Image Formats	Working with Files
	Working with Streams
	Working with JPEG
	Working with PDF
	Working with EPS
	Working with TIFF Extra Channels
	Loading RAW files
	Applying Lossless JPEG Transforms
	Loading and Saving Animated GIFs
	Loading and Saving Animated WebPs

	Transforming Images (Resize, Rotate, Crop)
	Working with Metadata
	Color Management and Color Reduction
	Drawing Text and Graphics
	Color Keying (Green Screen Removal)
	Channels and Pixel Data
	Color and Tone Correction
	Working with Photoshop (PSD) Files
	Image Filters
	Processing Large Images
	Basics of Image Processing
	Troubleshooting
	Class Library Reference
	Licensing
	End User License Agreement
	Copyright Notices

Working with PDF

PDF was developed by Adobe Systems, Inc. for secure and reliable distribution of electronic documents independent of software, hardware, and operating system. In general, a PDF file includes a complete description of a fixed-layout flat document, such as the text, fonts, graphics, and other information needed to display it.

Graphics Mill supports reading and writing to PDF files. A PDF document can be either a raster or vector file. This topic demonstrates how to create PDF documents and read their content in Graphics Mill.

Using Bitmap.Save

In the simplest case, you can create a single-page PDF document using the Bitmap.Save method.
 You just create a bitmap containing the desired data and save it in the PDF file format. Additionally, you can provide PDF compression parameters via the PdfSettings class.

The code below creates a PDF file with a single page containing a raster text string.

C#
using (var bitmap = new Bitmap(640, 480, PixelFormat.Format24bppRgb, RgbColor.White))
{
 using (var graphics = bitmap.GetGraphics())
 {
 var font = new Aurigma.GraphicsMill.Drawing.Font("Times New Roman", 20);
 var brush = new Aurigma.GraphicsMill.Drawing.SolidBrush(RgbColor.Black);

 graphics.DrawString("Graphics Mill", font, brush, 220, 200);

 bitmap.Save(@"Images\Output\out.pdf", new PdfSettings(CompressionType.Jpeg, 90));
 }
}

If you open the resulting PDF file, you will note that the text quality degrades while zooming in/out and selecting a text string does not work. The reason is that the text is stored in a raster structure. Therefore, if you want to draw high-quality vector text and graphics or create multipage documents, you should use the PdfWriter class.

Using PdfWriter

The PdfWriter class introduces a more flexible way to create PDF documents.
 Using this class, you can create PDF documents containing raster images and vector shapes.
 You can also draw vector text that has advantages compared to raster text - the text is scaled without distortion.

PdfWriter allows for creating multipage PDF documents.
 It provides the AddPage method that appends a new blank page to the document.
 For each page, you can create Graphics via the
 GetGraphics() method, which is necessary for drawing on a PDF.
 Note that you can draw only on the last created page. To learn in detail how to draw Graphics,
 read the Drawing section. The following snippet demonstrates how to create a single-page PDF document with the specified size,
 and how to get Graphics from it:

C#
using (var pdfWriter = new PdfWriter(@"Images\Output\out.pdf"))
{
 pdfWriter.AddPage(500, 500);
 using (var graphics = pdfWriter.GetGraphics())
 {
 //...
 }
}

PdfWriter provides a number of overloaded
 AddPage methods allowing you to specify the DPI of a new page,
 its background color, color profile, or boundaries. Let us discuss how to specify some of these settings in more detail.

Page Boundaries

Graphics Mill provides the following boundaries for PDF documents:

	
Crop Box is a rectangle defining the region surrounding the content which is to be clipped when the PDF page is displayed or printed.
 The Crop Box specifies the visible part of the content.
	
Bleed Box is a rectangle defining the region to which the contents of the page should be clipped when output in a production environment.
 By default, the Bleed Box equals the Crop Box.
	
Trim Box is the dimensions of the fulfilled page.
 In contrast with the Crop Box, the Trim Box is important because it defines the actual page size used for positioning pages on a press sheet.

The following snippet demonstrates how to add a new page to the PDF document with the specified DPI, background color, crop box, trim box, and bleed box:

C#
using (var pdfWriter = new PdfWriter(@"Images\Output\out.pdf"))
{
 var dpi = 300f;
 pdfWriter.AddPage(500, 500, dpi, dpi, RgbColor.LightCoral, new System.Drawing.RectangleF(10, 10, 480, 480),
 new System.Drawing.RectangleF(30, 30, 380, 380), new System.Drawing.RectangleF(20, 20, 400, 400));
 using (var graphics = pdfWriter.GetGraphics())
 {
 //...
 }
}

Color Profile

A PDF document does not have a single color space for its pages. All graphic elements drawn on a PDF page have their own color spaces.
 For instance, you can draw a CMYK line and RGB bitmap on the same page and both of these elements will be displayed correctly according to their color spaces.
 However, you can specify a color profile that defines color characteristics and the color gamut of the resulting PDF page.
 If you are not familiar with concepts such as color management and color profiles, read the Color Management Basics article.

By default, the PDF page does not have a color profile, thus all graphic elements are drawn on the page without managing color.
 If the page was created with a profile, color management converts the colors of drawn graphics according to the specified profile.
 The following snippet illustrates how to add a new page to the PDF document with a CMYK profile:

C#
using (var pdfWriter = new PdfWriter(@"Images\Output\out.pdf"))
{
 pdfWriter.AddPage(500, 500, new ColorProfile(@"_Input\ColorProfiles\CoatedFOGRA27.icc"));
 using (var graphics = pdfWriter.GetGraphics())
 {
 //...
 }
}

Compression Type

	The Compression property defines the compression of a PDF file. Its default value is Zip. It works well for text PDFs, but for PDFs containing images, Jpeg can be significantly more effective. Also, you can set the Quality of JPEG compression.

	You can set compression type to Jpeg via PdfWriter.Compression:

C#
PdfWriter pdfWriter = new PdfWriter(@"Images\Output\out.pdf");
pdfWriter.Compression = CompressionType.Jpeg;
pdfWriter.Quality = 70;

	or via PdfSettings.Compression:

C#
PdfSettings pdfSettings = new PdfSettings();
pdfSettings.Compression = CompressionType.Jpeg;
pdfSettings.Quality = 70;

Working with Device Independent Coordinates

When creating a PDF document, you may need to work with device independent coordinates (for example, inches) instead of pixels.
 However, the AddPage method only allows for specifying the size of a new page in pixels.
 In this case, you can use the UnitConverter.ConvertUnitsToPixels(Single, Single, Unit) method,
 which converts inches to pixels according to the given DPI. Assume that we need to create a 3.5"x2.5" PDF with 300 DPI. Here is the snippet showing how to do this:

C#
var dpi = 300f;
using (var pdfWriter = new PdfWriter(@"Images\Output\out.pdf"))
{
 pdfWriter.AddPage(UnitConverter.ConvertUnitsToPixels(dpi, 3.5f, Unit.Inch),
 UnitConverter.ConvertUnitsToPixels(dpi, 2.0f, Unit.Inch), dpi, dpi);
 using (var graphics = pdfWriter.GetGraphics())
 {
 //...
 }
}

Creating Multipage PDF

Now, let us discuss how to create a multipage PDF document. The following code snippet creates a PDF business card with two pages inside.
 The business card contains a raster logo, primitive vector graphics, and text strings.

	

C#
using (var writer = new PdfWriter(@"Images\Output\out.pdf"))
{
 writer.AddPage(350, 200);

 using (var page1 = writer.GetGraphics())
 {
 page1.DrawImage(new Bitmap(@"Images\logo.png"), 22, 8);

 var pen = new Pen(RgbColor.Gray, 1);
 page1.DrawRectangle(pen, new System.Drawing.RectangleF(324, 84, 26, 58));
 page1.DrawLine(pen, 24, 138, 174, 138);

 var font = page1.CreateFont("Verdana", "bold", 28);
 var brush = new SolidBrush(RgbColor.Gray);
 var point = new System.Drawing.PointF(115, 15);
 var plainText = new PlainText("Company", font, brush, point);
 page1.DrawText(plainText);

 font = page1.CreateFont("Verdana", 12);
 point = new System.Drawing.PointF(14, 116);
 plainText = new PlainText("Manager", font, brush, point);
 page1.DrawText(plainText);

 var boundedText = new BoundedText("Phone: 1.123.456.7890\nEmail: john@company.com",
 font, brush, new System.Drawing.RectangleF(32, 150, 170, 40), TextAlignment.Left);
 page1.DrawText(boundedText);

 font = page1.CreateFont("Verdana", 18);
 brush = new SolidBrush(RgbColor.Black);
 point = new System.Drawing.PointF(14, 96);
 plainText = new PlainText("John Doe", font, brush, point);
 page1.DrawText(plainText);
 }

 writer.AddPage(350, 200);
 using (var page2 = writer.GetGraphics())
 {
 var font = page2.CreateFont("Times New Roman", 16);
 var brush = new SolidBrush(RgbColor.Blue);
 var point = new System.Drawing.PointF(82, 92);
 var plainText = new PlainText("http://company.com", font, brush, point);
 page2.DrawText(plainText);
 }
}

The resulting business card will look as follows:

Using PdfReader

The PdfReader class allows you to load PDF files. After you read a file, you can process it as a raster or vector graphics.

Let us look at the simplest use case, when you need to rasterize a one-page PDF file.

C#
var dpi = 90f;
var quality = 90;
using (var reader = new PdfReader(@"Images\in.pdf", dpi, dpi))
using (var writer = new JpegWriter(@"Images\Output\out.jpg", quality, false, true))
{
 Pipeline.Run(reader + writer);
}

In this example, you assign the reader and writer objects to set up the source and destination files. Then, you run the Pipeline to convert an image from PDF to JPG. In this case, implicit rasterization occurs in the pipeline.

When you work with vector graphics, GraphicsContainer is used to handle vector images without rasterization. Another image format of vector graphics that Graphics Mill supports is the SVG format. To illustrate how you can work with GraphicsContainer, let us convert a PDF to an SVG file.

C#
using (var reader = new PdfReader(@"Images\in.pdf", dpi, dpi))
using (var container = reader.Frames[0].GetContent())
using (var writer = new SvgWriter(@"Images\Output\out.svg", reader.Width, reader.Height))
using (var graphics = writer.GetGraphics())
{
 graphics.DrawContainer(container, 0, 0);
}

Here, PdfFrame.GetContent() returns GraphicsContainer with vector graphics that you then pass to the Graphics.DrawContainer() method to draw it on the writer object and save into the output file in the vector form. If you only want to rasterize the source image, you do not need to call the PdfFrame.GetContent() method; use Frame.GetBitmap() instead.

See Also

	
	
Reference

	
PdfWriter Class

	
PdfSettings Class

	
UnitConverter Class

	
UnitConverter.ConvertUnitsToPixels(Single, Single, Unit) Method

	
Pipeline Class

	
PdfReader Class

	
SvgWriter Class

	
Manual

	
Working with Files

	
Supported File Formats

	
Manipulating Vector Images with Graphics Containers

	
	
	
	

		

		
			
				
					
						Graphics Mill

						DownloadsOnline demoBuy onlineReturn policyWhat's new?DocumentationForumsSupport

					

					
						Features

						 Raster & Vector Image Formats Resize, crop, autofix, 30+ filters Metadata Color management Text and graphics rendering Very large image manipulation Chroma keying Working with Photoshop files PDF processing HTML5-based image editor

					

					
						Imaging Toolkit

						Image ManipulationConvert Text to ImagesClipping PathPSD & variable data printingSDKASP.NETC#LibraryToolkit

					

					
						Company

						About UsContact UsWhite PapersEventsBlog

					

				

				
					
						
						© 2001–2024 Aurigma Inc. Legal Notice and Privacy Policy

					

				

			

			
				Our website uses cookies to enhance your experience. If you continue, you agree with our Privacy Policy.

				Got It!
			

		
		
		
		
		
		
		
		
	